# Large-Scale Structure with non-Gaussian initial conditions

Kendrick Smith (Princeton) Berkeley, April 2011

> Smith & LoVerde, 1010.0055 LoVerde & Smith, 1102.1439 Smith, Ferraro & LoVerde, to appear

#### Outline

- 1. Introduction and motivation
- 2. Halo mass function
- 3. Large-scale halo clustering

#### From inflation to observations



Friday, April 29, 2011

# Constraining inflation

In the simplest models of inflation, the initial fluctuations are.....

• nearly scale invariant  $(P(k) \propto k^{n_s-4})$ 

• scalar

• adiabatic

• Gaussian

# Constraining inflation

In the simplest models of inflation, the initial fluctuations are.....

```
• nearly scale invariant (P(k) \propto k^{n_s-4}) "running"? (P(k) \propto k^{n_s-4+\alpha \log(k/k_0)}) features/glitches?
```

• scalar

```
tensor modes ("r")?
```

• adiabatic

isocurvature modes?

Gaussian

primordial non-Gaussianity?

#### A non-Gaussian model: curvaton scenario

- Light scalar field  $\sigma$  ("curvaton") is subdominant during inflation (spectator field)
- After inflation ends, inflaton decays to radiation before the curvaton  $\Rightarrow \rho_{\rm infl} \propto a^{-4}, \; \rho_{\rm curv} \propto a^{-3}$
- Suppose curvator dominates the energy density, and oscillates near the minimum of a quadratic potential  $(V(\sigma) = V_0 + m_\sigma^2 \sigma^2)$  before decaying to SM particles
- Induced curvature perturbation will contain a term proportional to the *square* of the Gaussian field perturbation that was generated during inflation:

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle)$$

where  $f_{NL}$  is a free parameter.

(Notation: 
$$\Phi = -\frac{3}{5}\zeta$$
)

# "Local non-Gaussianity"

Primordial non-Gaussianity defined by:

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle)$$

#### Possible mechanisms:

- curvaton scenario (spectator field during inflation subsequently dominates energy density)
- models with variable inflaton decay rate
- models with modulated reheating
- multifield ekpyrotic models (e.g. "New Ekpyrosis")

WMAP constraint:  $f_{NL} = 32 \pm 21 \ (1\sigma)$ 

(Smith, Senatore & Zaldarriaga 2009; Komatsu, Smith et al 2010)

Single-field slow-roll inflation predicts  $f_{NL} = \frac{5}{12}(1 - n_s) \approx 0.017$  (Maldacena 2002)

Conversely, detection of  $f_{NL} \gtrsim \mathcal{O}(10^{-2})$  would rule out all single-field models of inflation (Maldacena 2002; Creminelli et al 2004)

# Single-field consistency relation

In an  $f_{NL}$  cosmology, the three-point function is large in the "squeezed" limit  $k_1 \ll \min(k_2, k_3)$ 



Creminelli & Zaldarriaga (2004): Simple, general formula for the bispectrum in the squeezed limit, valid in all models of single field inflation

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \to (1-n_s)\frac{1}{k_1^3k_2^3}$$

Interpretation: single field  $\Rightarrow f_{NL} = \mathcal{O}(10^{-2})$ 

Physical intuition: in single field inflation, value of the inflaton field is the only "clock"

After a long-wavelength mode exits the horizon, evolution is indistinguishable from case where inflaton evolves along the same classical trajectory, but all k's have been slightly rescaled

=> When short-wavelength mode crosses the horizon, its power spectrum gets rescaled by a factor which is proportional to the deviation from scale invariance

# "Generalized local non-Gaussianity"

Cubic term in potential:

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + g_{NL}(\Phi_G(\mathbf{x})^3 - 3\langle \Phi_G^2 \rangle \Phi_G(\mathbf{x}))$$

Generically arises if non-quadratic corrections to curvaton potential  $V(\sigma)$  are important

Two-field models in which initial potential is sum of Gaussian and non-Gaussian fields:

$$\Phi(\mathbf{x}) = \alpha \Phi_G^{(i)}(\mathbf{x}) + \beta \Phi_G^{(c)}(\mathbf{x}) + \frac{f_{NL}}{\beta^2} (\Phi_G^{(c)}(\mathbf{x})^2 - \langle \Phi_G^{(c)2} \rangle)$$

where  $\Phi_G^{(i)}, \Phi_G^{(c)}$  are uncorrelated Gaussian fields with the same power spectra

$$(P_{\Phi_G^{(i)}}(k) = P_{\Phi_G^{(c)}}(k) = A(k/k_0)^{n_s-4}, \quad P_{\Phi_G^{(i)}\Phi_G^{(c)}}(k) = 0)$$

and 
$$\alpha^2 + \beta^2 = 1$$

# Summary: generalized local non-Gaussianity

" $f_{NL}$  cosmology"

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle)$$

" $g_{NL}$  cosmology"

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + g_{NL}(\Phi_G(\mathbf{x})^3 - 3\langle \Phi_G^2 \rangle \Phi_G(\mathbf{x}))$$

" $\tau_{NL}$  cosmology"

$$\Phi(\mathbf{x}) = \alpha \Phi_G^{(i)}(\mathbf{x}) + \beta \Phi_G^{(c)}(\mathbf{x}) + \frac{f_{NL}}{\beta^2} (\Phi_G^{(c)}(\mathbf{x})^2 - \langle \Phi_G^{(c)2} \rangle) \qquad \text{(where } \alpha^2 + \beta^2 = 1)$$

$$\left[ \text{Note: } \tau_{NL} = \left( \frac{6f_{NL}}{5\beta} \right)^2 \right]$$

$$f_{NL}$$
 cosmology corresponds to special case:  $\tau_{NL} = \left(\frac{6}{5}f_{NL}\right)^2$  or  $(\alpha, \beta) = (0, 1)$ 

Scope of talk: study halo statistics in these models, specifically

- halo mass function
- large-scale clustering

#### Outline

- 1. Introduction and motivation
- 2. Halo mass function
- 3. Large-scale halo clustering



Start with *linear* density field  $\delta_{lin}(\mathbf{x}, z)$ 



Apply tophat smoothing on mass scale M to obtain smoothed linear density  $\delta_M(\mathbf{x}, z)$ 



Apply threshhold: (halos of mass  $\geq M$ )  $\Leftrightarrow$  (regions where  $\delta_M(\mathbf{x},z) \geq \delta_c$ )

 $\delta_c = 1.68$  motivated by analytic spherical collapse model

 $\delta_c = 1.42$  gives better agreement with N-body simulations



$$n_h = \begin{cases} \rho_m/M & \text{if } \delta_M(\mathbf{x}, z) \ge \delta_c \\ 0 & \text{if } \delta_M(\mathbf{x}, z) < \delta_c \end{cases}$$

This description omits some ingredients which will be important for clustering but not the mass function:

- 1) Lagrangian to Eulerian mapping
- 2) Poisson noise

#### Press-Schechter Model: Mass Function

In the Press-Schechter model, the halo mass function n(M) is directly related to the 1-point PDF  $p(\delta_M)$  of the smoothed linear density field

$$\int_{M}^{\infty} n(M')dM' = \frac{\rho_{m}}{M} \int_{\delta_{c}}^{\infty} p(\delta_{M}) d\delta_{M}$$

$$n(M) = -\frac{d}{dM} \left[ \frac{\rho_m}{M} \int_{\delta_c}^{\infty} p(\delta_M) d\delta_M \right]$$



# Non-Gaussian 1-point PDF

Primordial non-Gaussianity perturbs the 1-point PDF  $p(\delta_M)$  from a Gaussian distribution







Skewness = 0  
Kurtosis 
$$\propto g_{NL}$$

# Non-Gaussian 1-point PDF: Edgeworth expansion

Technical tool for describing perturbation of 1-point PDF due to non-Gaussianity

Gives series representation of  $p(\delta_M)$  parameterized by cumulants  $\kappa_n(M) = \frac{\langle \delta_M^n \rangle_{\text{conn.}}}{\langle \delta_M^2 \rangle^{n/2}}$ 

$$p(\delta) = \int \frac{dk}{2\pi} e^{-ik\delta} \exp\left(-\frac{\langle \delta_M^2 \rangle}{2} k^2 + \sum_{n \ge 3} \kappa_n(M) \frac{(ik\langle \delta_M^2 \rangle^{1/2})^n}{n!}\right)$$

Plugging into Press-Schechter expression for mass function, can calculate derivatives

$$\frac{\partial \log n(M)}{\partial f_{NL}} = \frac{F_1'(M)}{F_0'(M)} \qquad F_0(M) = \frac{1}{2} \operatorname{erfc} \left( \frac{\nu_c(M)}{\sqrt{2}} \right) 
F_1(M) = \frac{1}{(2\pi)^{1/2}} e^{-\nu_c(M)^2/2} \left( \frac{\kappa_3(M)}{6} H_2(\nu_c(M)) \right) 
\frac{\partial \log n(M)}{\partial g_{NL}} = \frac{F_2'(M)}{F_0'(M)} \qquad F_2(M) = \frac{1}{(2\pi)^{1/2}} e^{-\nu_c(M)^2/2} \left( \frac{\kappa_2(M)}{2} H_1(\nu_c(M)) + \frac{\kappa_3(M)^2}{72} H_5(\nu_c(M)) \right) \right)$$

Loverde & Smith 2011

# N-body simulations

Collisionless N-body simulations, GADGET-2 TreePM code.

#### Unless otherwise specified:

- periodic boundary conditions,  $L_{\text{box}} = 1600 \ h^{-1} \ \text{Mpc}$
- particle count  $N = 1024^3$
- force softening length  $R_s = 0.05 (L_{\rm box}/N^{1/3})$
- initial conditions simulated at  $z_{\rm ini}=100$  using Zeldovich approximation
- FOF halo finder, link length  $L_{\rm FOF} = 0.2 \, (L_{\rm box}/N^{1/3})$



# Mass function: $f_{NL}$ simulations

$$\Phi(\mathbf{x}) = \Phi_{\mathbf{G}}(\mathbf{x}) + \mathbf{f}_{NL} \quad (\Phi_{\mathbf{G}}(\mathbf{x})^2 - \langle \Phi_{\mathbf{G}}^2 \rangle)$$

$$5 \quad \text{sims, } \mathbf{f}_{NL} = \pm 500, \quad \tau_{NL} = (\frac{6}{5} \mathbf{f}_{NL})^2$$

$$- \text{log Edge., } \mathbf{f}_{NL} = \pm 500, \quad \tau_{NL} = (\frac{6}{5} \mathbf{f}_{NL})^2$$

$$- \log \mathbf{Edge., } \mathbf{f}_{NL} = \pm 500, \quad \tau_{NL} = (\frac{6}{5} \mathbf{f}_{NL})^2$$

$$2 \quad \mathbf{z} = 1$$

$$1 \quad \mathbf{z} = 0$$

$$10^{13} \quad 10^{14} \quad 10^{15}$$

$$\mathbf{M} \quad (\mathbf{h}^{-1} \mathbf{M}_{\odot})$$

log-Edgeworth has correct asymptotic behavior at high M

"Edgeworth" mass function: 
$$n(M) \approx n_G(M) + \left(\frac{\partial n}{\partial f_{NL}}\right) f_{NL} + \left(\frac{\partial n}{\partial \tau_{NL}}\right) \tau_{NL} + \left(\frac{\partial n}{\partial g_{NL}}\right) g_{NL}$$

"Log-Edgeworth" mass function: 
$$n(M) \approx n_G(M) \exp\left(\frac{\partial \log n}{\partial f_{NL}} f_{NL} + \frac{\partial \log n}{\partial \tau_{NL}} \tau_{NL} + \frac{\partial \log n}{\partial g_{NL}} g_{NL}\right)$$

## Mass function: $\tau_{NL}$ simulations

[ log-Edgeworth mass function looks better here! ]



## Mass function: $g_{NL}$ simulations

[ log-Edgeworth mass function looks better here too! ]



#### Outline

- 1. Introduction and motivation
- 2. Halo mass function
- 3. Large-scale halo clustering

# Local non-Gaussianity: large-scale clustering

Dalal et al (2007): extra halo clustering on large scales in an  $f_{NL}$  cosmology

Clustering  $\propto 1/\alpha(k)$ , where

$$\alpha(k,z) = \frac{2}{3} \frac{k^2 T(k) D(z)}{\Omega_m H_0^2}$$

satisfies

$$\delta_{\rm lin}(\mathbf{k}, z) = \alpha(k, z) \Phi(\mathbf{k})$$



Dalal, Dore, Huterer & Shirokoff (2007)

Large-scale structure constraints are competitive with the CMB Slosar et al (2008):  $f_{NL}=20\pm25~(1\sigma)~$  from SDSS-II

What happens in a  $g_{NL}$  or  $\tau_{NL}$  cosmology?

# Large-scale halo bias: Gaussian case

Barrier crossing model: (halos of mass  $\geq M$ )  $\Leftrightarrow$  (regions where  $\delta_M \geq \delta_c$ )



How is halo abundance affected by the presence of a long-wavelength overdensity  $\delta_l(x)$ ?



Local halo overdensity  $\delta_h \approx b_0 \delta_l$  (where  $b_0 = \frac{\partial \log n}{\partial s_l}$ )

Define halo bias 
$$b(k) = \frac{P_{mh}(k)}{P_{mm}(k)}$$

$$b(k) \rightarrow b_0$$

$$(as k \rightarrow 0)$$

 $b(k) \rightarrow b_0$  (as  $k \rightarrow 0$ ) ("weak" form of prediction)

$$b_0 = \frac{\partial \log n}{\partial \delta_l}$$

("strong" prediction)

# Large-scale bias: $f_{NL}$ cosmology

$$\begin{split} \Phi(\mathbf{x}) &= \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle) \\ \text{Write } \Phi_G &= \Phi_l + \Phi_s \\ \Phi &= \Phi_l + \underbrace{f_{NL}(\Phi_l^2 + \Phi_s^2 - \langle \Phi^2 \rangle)}_{\text{irrelevant for }} + \underbrace{(1 + 2f_{NL}\Phi_l)\Phi_s}_{\text{Modulates "local" } \sigma_8: \\ \text{large-scale bias } \sigma_8(x) &= \bar{\sigma}_8(1 + 2f_{NL}\Phi_l(x)) \end{split}$$



Local halo overdensity 
$$\delta_h \approx b_0 \delta_l + f_{NL} b_1 \Phi_l$$
  $\left(b_0 = \frac{\partial \log n}{\partial \delta_l}, \ b_1 = 2 \frac{\partial \log n}{\partial \log \sigma_8}\right)$   
Halo bias  $b(k) \to b_0 + f_{NL} \frac{b_1}{\alpha(k)}$  (as  $k \to 0$ ) ("weak" prediction)

$$b_1 = 2\delta_c(b_0 - 1)$$

("strong" prediction)

# Large-scale bias: $\tau_{NL}$ cosmology

$$\Phi(\mathbf{x}) = \alpha \Phi_G^{(i)}(\mathbf{x}) + \beta \Phi_G^{(c)}(\mathbf{x}) + \frac{f_{NL}}{\beta^2} (\Phi_G^{(c)}(\mathbf{x})^2 - \langle \Phi_G^{(c)2} \rangle)$$

$$\Phi = \Phi_l + \underbrace{\frac{f_{NL}}{\beta^2} (\Phi_l^{(c)2} + \Phi_s^{(c)2} - \langle \Phi^2 \rangle)}_{} + \underbrace{\left(\Phi_s + 2 \frac{f_{NL}}{\beta^2} \Phi_l^{(c)} \Phi_s^{(c)}\right)}_{}$$

irrelevant for large-scale bias

Looks like spatially varying  $\sigma_8$ :

$$\sigma_8(x) = \bar{\sigma}_8 \left( 1 + 2 \frac{f_{NL}}{\beta} \Phi_l^{(c)} \right)$$



Local halo overdensity 
$$\delta_h \approx b_0 \delta_l + \frac{f_{NL}}{\beta} b_1 \Phi_l^{(c)}$$

$$\left(b_0 = \frac{\partial \log n}{\partial \delta_l}, \ b_1 = 2\frac{\partial \log n}{\partial \log \sigma_8}\right)$$

Gaussian and non-Gaussian bias terms are not 100% correlated

#### Stochastic halo bias

#### $f_{NL}$ cosmology

Local halo overdensity  $\delta_h \approx b_0 \delta_l + f_{NL} b_1 \Phi_l$ 

Halo bias 
$$b(k) \rightarrow b_0 + f_{NL} \frac{b_1}{\alpha(k)}$$

$$P_{mh}(k) = b(k)P_{mm}(k)$$

$$P_{hh}(k) = b(k)^2 P_{mm}(k) + \frac{1}{n}$$

#### $\tau_{NL}$ cosmology

Local halo overdensity 
$$\delta_h \approx b_0 \delta_l + \frac{f_{NL}}{\beta} b_1 \Phi_l^{(c)}$$

Halo bias 
$$b(k) \to b_0 + f_{NL} \frac{b_1}{\alpha(k)}$$

$$P_{mh}(k) = b(k)P_{mm}(k)$$

$$P_{mh}(k) = b(k)P_{mm}(k)$$

$$P_{hh}(k) = b(k)^{2}P_{mm}(k) + \frac{\alpha^{2}f_{NL}^{2}}{\beta^{2}} \frac{b_{1}^{2}P_{mm}(k)}{\alpha(k)^{2}} + \frac{1}{n}$$

Halos and matter not 100% correlated ("stochastic bias")

Different halo samples not 100% correlated

# Large-scale bias: $g_{NL}$ cosmology

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + g_{NL}(\Phi_G(\mathbf{x})^3 - 3\langle \Phi_G^2 \rangle \Phi_G(\mathbf{x}))$$

$$\Phi = \Phi_l + \Phi_s + g_{NL}(\Phi_l^3 + \Phi_s^3 - 3\langle \Phi_l^2 \rangle \Phi_l - 3\langle \Phi_s^2 \rangle \Phi_s) + 3g_{NL}\Phi_l(\Phi_s^2 - \langle \Phi_s^2 \rangle) + 3g_{NL}(\Phi_l^2 - \langle \Phi_l^2 \rangle)\Phi_s$$

irrelevant for large-scale bias

Looks like spatially varying  $f_{NL}$ :

$$f_{NL}(x) = 3g_{NL}\Phi_l(x)$$

Looks like spatially varying  $\sigma_8$ :

$$\sigma_8(x) = 3g_{NL}(\Phi_l(x)^2 - \langle \Phi_l^2 \rangle)\bar{\sigma}_8$$



Local halo overdensity  $\delta_h \approx b_0 \delta_l + g_{NL} b_2 \Phi_l$ 

Halo bias 
$$b(k) \to b_0 + g_{NL} \frac{b_2}{\alpha(k)}$$
 (as  $k \to 0$ )
$$b_2 = 3 \left( \frac{\partial \log n}{\partial f_{NL}} \right)$$

("weak" prediction)

(stronger)

(strongest)

$$= \frac{\kappa_3(M)}{2} H_3 \left(\frac{\delta_c}{\sigma(M)}\right) - \frac{d\kappa_3/dM}{d\sigma/dM} \frac{\sigma(M)^2}{2\delta_c} H_2 \left(\frac{\delta_c}{\sigma(M)}\right) \tag{9}$$

# Halo bias: $f_{NL}$ simulations

Prediction from barrier crossing model:

$$b(k) \to b_0 + f_{NL} \frac{b_1}{\alpha(k)} \qquad b_1 = 2\delta_c(b_0 - 1)$$

Agreement with simulations: perfect!



## Stochastic halo bias: $\tau_{NL}$ simulations

Define stochasticity r(k) by:

$$r(k) = \frac{P_{hh}(k) - 1/n}{P_{mm}(k)} - \left(\frac{P_{mh}(k)}{P_{mm}(k)}\right)^{2}$$

Prediction from barrier crossing model:

$$r(k) = rac{lpha^2 f_{NL}^2}{eta^2} rac{b_1^2}{lpha(k)^2} \quad ext{in } au_{NL} ext{ cosmology}$$

#### Results from simulations:

- significant stochasticity in Gaussian cosmology
- no change to stochasticity in  $f_{NL}$  cosmology
- boosted stochasticity in  $\tau_{NL}$  cosmology



#### Stochastic halo bias: Gaussian simulations

Can we use the halo model to explain the Gaussian stochasticity seen in simulations?

$$r(k) = \frac{P_{hh}(k) - 1/n}{P_{mm}(k)} - \left(\frac{P_{mh}(k)}{P_{mm}(k)}\right)^{2}$$

Leading halo model contribution:

$$r(k) \approx -\left(\frac{2}{P_{mm}(k)}\right) \frac{f}{n}$$
 fraction of total mass in halos halo number density

Does this agree with simulations? Answer: sometimes

Halo model does not seem to give complete description of largescale stochasticity in a Gaussian cosmology

Empirical observation:

$$r(k) 
ightarrow rac{r_0}{P_{mm}(k)} \qquad (\text{as } k 
ightarrow 0)$$
 \_3  $r_0 = ?$ 



## Stochastic halo bias: $\tau_{NL}$ simulations

Interpret barrier crossing result as prediction for  $r_{NG}(k) - r_G(k)$ , i.e. non-Gaussian contribution

$$r_{NG}(k) - r_G(k) = \frac{\alpha^2 f_{NL}^2}{\beta^2} \frac{b_1^2}{\alpha(k)^2}$$

Comparison with simulations: shape is correct, amplitude is not!

$$r_{NG}(k) - r_G(k) = q \left( \frac{\alpha^2 f_{NL}^2}{\beta^2} \frac{b_1^2}{\alpha(k)^2} \right)$$



|         | Mass range $(h^{-1}M_{\odot})$                  | $f_{NL}=500$    | $f_{NL}=250$    | $f_{NL} = -250$ | $f_{NL} = -500$ |
|---------|-------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| z = 2   | $M > 1.15 \times 10^{13}$                       | $0.98 \pm 0.07$ | $0.88 \pm 0.08$ | $0.62 \pm 0.06$ | $0.42 \pm 0.03$ |
| z = 1   | $1.15 \times 10^{13} < M < 2.32 \times 10^{13}$ | $0.79 \pm 0.09$ | $0.83 \pm 0.12$ | $0.67 \pm 0.09$ | $0.46\pm0.04$   |
|         | $M > 2.32 \times 10^{13}$                       | $0.83 \pm 0.07$ | $0.70 \pm 0.08$ | $0.66 \pm 0.07$ | $0.51 \pm 0.04$ |
| z = 0.5 | $1.15 \times 10^{13} < M < 2.32 \times 10^{13}$ | $1.01\pm0.18$   | $0.92 \pm 0.29$ | $0.45 \pm 0.19$ | $0.57 \pm 0.10$ |
|         | $2.32 \times 10^{13} < M < 4.66 \times 10^{13}$ | $0.80 \pm 0.15$ | $0.58 \pm 0.22$ | $0.73 \pm 0.19$ | $0.48 \pm 0.08$ |
|         | $M > 4.66 \times 10^{13}$                       | $0.81 \pm 0.09$ | $0.79 \pm 0.12$ | $0.80 \pm 0.10$ | $0.51 \pm 0.05$ |
| z = 0   | $1.15 \times 10^{13} < M < 2.32 \times 10^{13}$ | $1.37 \pm 0.80$ | $1.06\pm1.12$   | $1.00 \pm 1.41$ | $0.90 \pm 0.51$ |
|         | $2.32 \times 10^{13} < M < 4.66 \times 10^{13}$ | $1.35 \pm 0.44$ | $1.57 \pm 0.77$ | $0.82 \pm 0.59$ | $0.58 \pm 0.25$ |
|         | $4.66 \times 10^{13} < M < 1.02 \times 10^{14}$ | $0.71 \pm 0.26$ | $0.90 \pm 0.49$ | $1.12 \pm 0.41$ | $0.63 \pm 0.17$ |
|         | $M > 1.02 \times 10^{14}$                       | $0.79 \pm 0.13$ | $0.93 \pm 0.21$ | $0.73 \pm 0.15$ | $0.53 \pm 0.07$ |

Table 3: Values of the q-parameter, defined in Eq. (35), obtained from N-body simulations for various values of  $f_{NL}$ , redshift, and mass bin. (We take  $\xi = 1$  throughout)

#### Halo bias: $g_{NL}$ simulations

Predictions from barrier crossing model:

$$b(k) \to b_0 + g_{NL} \frac{b_2}{\alpha(k)}$$

$$b_2 = 3 \left( \frac{\partial \log n}{\partial f_{NL}} \right)$$

$$= \frac{\kappa_3(M)}{2} H_3 \left( \frac{\delta_c}{\sigma(M)} \right) - \frac{d\kappa_3/dM}{d\sigma/dM} \frac{\sigma(M)^2}{2\delta_c} H_2 \left( \frac{\delta_c}{\sigma(M)} \right)$$

Let's test this prediction in several steps.....

First: is  $b(k) = b_0 + g_{NL} \frac{b_2}{\alpha(k)}$  a good

fit, treating  $b_0, b_2$  as free parameters?

Answer: yes!

(see also Desjacques & Seljak 2010)



## Halo bias: $g_{NL}$ simulations

Second: general relation between  $g_{NL}$  dependence of bias and  $f_{NL}$  dependence of mass function

$$b_2 = 3\left(\frac{\partial \log n}{\partial f_{NL}}\right)$$



Simulations disagree by ~20%

very puzzling since derivation of this general relation seems to make few assumptions!!

#### Halo bias: $g_{NL}$ simulations

Third: comparison between  $\frac{\partial \log n}{\partial f_{NL}}$  and barrier crossing prediction

$$\frac{\kappa_3(M)}{6}H_3\left(\frac{\delta_c}{\sigma(M)}\right) - \frac{d\kappa_3/dM}{d\sigma/dM}\frac{\sigma(M)^2}{6\delta_c}H_2\left(\frac{\delta_c}{\sigma(M)}\right)$$



# Summary

- Mass function: Victory! Log-Edgeworth form works well everywhere
- Clustering in  $f_{NL}$  cosmology: barrier crossing model predicts non-stochastic bias of the form

$$b(k) \to b_0 + f_{NL} \frac{b_1}{\alpha(k)}$$
  $b_1 = 2\delta_c(b_0 - 1)$ 

N-body simulations agree!

• Clustering in  $\tau_{NL}$  cosmology: predict stochastic bias of the form

$$r(k) = \frac{\alpha^2 f_{NL}^2}{\beta^2} \frac{b_1^2}{\alpha(k)^2}$$

In N-body simulations, find qualitative agreement: shape is correct, but find correction to the amplitude that we don't currently understand semianalytically. Stochasticity not completely understood even for Gaussian initial conditions!

• Clustering in  $g_{NL}$  cosmology: predict bias of the form

$$b(k) \to b_0 + g_{NL} \frac{b_2}{\alpha(k)}$$
  $b_2 = 3\left(\frac{\partial \log n}{\partial f_{NL}}\right)$ 

In N-body simulations, find small correction (3  $\rightarrow$  3.6); can we understand this semianalytically?

# Halo stochasticity: gnl simulations

